Sulfide Assemblages and Precious Metal Incorporation in the Ann Mason Copper Porphyry Deposit, Yerington, Nevada

Abstract number: 292085
C.K. Pancell, N. DeWitt, and H.M. Aed
Department of Geological and Environmental Sciences, California State University, Chico

Introduction:

Objective: To find and regulate the relationships between precious metal bearing minerals in a copper ore at the Ann Mason Copper Porphyry Deposit in order to enhance its value.

Geologic Background: The Ann Mason deposit is a copper porphyry deposit formed from hydrothermal fluids circulating in a crystalline intrusive during the formation of the intrusive. The copper is hosted by sedimentary rocks, quartz monzonite, granite, and quartz monzonite porphyry. The ore is defined as a copper-rich epithermal intrusion containing copper sulfides and precious metals.

Methods:

- Petrographic studies on sixty samples from the Ann Mason Porphyry Copper Deposit were analyzed using a Leica DM 2500 microscope to determine primary and secondary minerals present in the deposit.

Results:

- The thirty samples examined were mainly composed of pyrite, chalcopyrite, bornite, and arsenopyrite. The samples were analyzed using SEM backscatter imaging and EDAX spectra to determine chemical assemblages.

- Table 1: Petrographic and reflected light image of sample EG

- Figure 6: Petrographic and reflected light image of sample EG

- Figure 7: SEM backscatter image and EDAX spectrum of sample EG

Discussion:

- General Trends:

 - No clear trend between lithology and accessory precious minerals
 - Minerals are larger in Cpy-Br zone
 - No minerals in solid solution in sulfides
 - Pb found as a calcite
 - Ag found as a tellurite
 - Sb found as a tellurite
 - Au found more often in Cpy-Br zone
 - Native Au found in pyrite in Py-Cpy zone
 - Pt-tellurides only in the Cpy-Br zone

- Model:

 - PbAgSbS
 - Native Ag
 - Hottite
 - Ag-Pt

- The model suggests that the distribution of minerals and precious metals is controlled by the deposit's geologic structure and hydrothermal activity.